# Students Today, Teachers Tomorrow ? Identifying Constraints on the Provision of Education 

## April 2007

Tahir Andrabi<br>(Pomona College)<br>Jishnu Das<br>(World Bank)<br>Asim Ijaz Khwaja<br>(Harvard University)

## Defining the Problem

- MDGs
$\square$ Universal primary education by 2015
$\square$ eliminating gender disparities in primary/secondary education.
- Increasing use of policies that increase the demand for education to help meet the MDGs
$\square$ Cash conditional on enrollment (Brazil, Mexico, Bangladesh, Pakistan)
- Theoretical literature highlights the possibility of supply-side constraints (Banerjee 05, Ljungqvist 93)
- Empirical literature - teacher quality \& compensation (Urquiola \& Vegas 05, Hoxby \& Leigh 04)
- This paper provides empirical support that supply-side factors (local/affordable teachers) matter


## This Paper

- Uses private sector location decisions as a marker of the conditions in the local market for education


## Two Results

(1) Government Schooling Investments facilitate private sector involvement in education
$\square$ Private Schools are 3 times more likely to arise in villages where the government previously constructed a secondary school for girls (GSS)

How? GSS led to private schools either through

- Increased revenues (through increased demand)
- Decreased costs (due to more potential teachers)
(2) Supply-side factors played a role: Private school teachers wages are 20 percent lower in villages with a GSS


## Voices of the entrepreneurs

"The big problem is teachers. In most villages, I can set up a private school, but who will teach? All the men are working and if I pay them what they want, I will never make a profit. I cannot get women from other villages---who will provide the transport for them if it gets dark? How will she be able to work in another village if she is married? The only way we can work is if there are girls who can teach in the village---that is why, I go to every house and ask if there is a high-school educated girl who can teach. I can pay them Rs. 800 (\$14) a month and run the school. Otherwise there is no possibility."
(Interview w/ Private school entrepreneur, November 2003)

## A Roadmap

- Why Pakistan: Decompose the previous quote
- The Country Context (Some Facts)
- The Basic Results in unadulterated figures
- Econometrics: Making sure that the basic results work (Identification)
$\square$ Further Econometric Notes
- Channels through which the GSS impact works
- Endnotes:
$\square$ Short vs. Long Term effects ?
$\square$ Are private schools improving the quality of education or do they represent a sectoral shift?


## The country

- Pakistan: A country where educational debates/questions very similar to the US, except for religion
$\square$ Which plays a much smaller role
- The "Failed-State argument" and religious schools
- Our related research: Madrassas (<1\%)
- Main educational debate within the country

$\square$ Low overall educational attainment
$\square$ Bad quality of government schools
$\square$ Role of private schools
$\square$ School choice


## 4 Reasons for Why Pakistan

Reason 1: Large Private Sector Informative about constraints to education

- Large and growing private sector (India: 15\%, Pakistan, Bangladesh > 30\%)
$\square$ A third of enrolled children in private schools -higher at primary level Evidence
$\square$ Ten-fold increase in last 2 decades Figure I
$\square$ Increasingly in rural areas Evidence
- Government sector
$\square$ Teacher hiring is centralized, wages do not respond to local market conditions, postings are non-transparent
- Private Sector - Pure market phenomenon
$\square$ No public subsidies or grants; For profit; Negligible percentage are NGO run (<2\%)
$\square$ Almost no de facto regulation
$\square$ Responds to higher revenues (school fees) and lower costs (teachers' wages)
$\square$ Affordable: Low Monthly Fee = days unskilled wage (annually $4 \%$ of GDP/capita US: 14\%) due to Lower Costs (Wages one-fifth) in Private Sector - Evidence
- Private sector responses thus indicative about the constraints to education (in ways that centralized government system performance may not be)


## 4 Reasons for Why Pakistan

Reason 2: Can separate gender \& level (primary vs. secondary) effects

- Education separated by levels and gender in public schools, no gender separation in private
- Allows us to separate out effects of different types of school construction
$\square$ Boy's secondary and primary schools
$\square$ Girl's secondary and primary schools
Reason 3: Isolating local shocks
- Restricted (geographical \& occupational) female mobility
$\square 70$ percent of marriages are village endogamous
$\square 87 \%$ of women teachers/health workers
$\square$ Implies that local shocks to supply of skilled labor take longer to dissipate
- Eases identification of local supply shocks on local markets


## 4 Reasons for Why Pakistan

Reason 4: Data Availability

- Data issues: FBS carried out census of private schools in 2000, which is critical for the exercise
$\square$ Low number of secondary schools (<5 percent of villages) : Cannot use household-survey data
$\square$ Candidate instruments (perhaps wider applicability) based on restrictions within admin areas on where schools can/cannot be located
- Matching FBS census to village-level census data allows us to examine these questions
$\square$ Not aware of comparable data in other countries


## Motivating Facts

- The 80s:
$\square$ Private Schools denationalized
$\square$ Wave of (girls) school construction in the 80s - Figure
- Private Schools and (pre-existing) public schools
$\square$ Girls Secondary Schools (GSS) matter the most
$\square$ Figure II
- Private Schools \& Educated Adults
$\square$ Women matter more
$\square$ Figure III
- Private Schools:
$\square$ Teachers mostly women (76\% vs 44\% in public), local (2/3rd live w/in 15 mins walk)
$\square$ Women teachers - 50\% lower wages (25-30\% conditional on education, experience etc.)


## Hypotheses

- Main:
$\square$ Girls Secondary School (GSS) construction in village (eventually) leads to Private School Creation
$\square$ Problem: Omitted Variables
- GSS placement endogenous (village selection)
- Channels? Supply vs Demand - Women as Teachers:
$\square$ GSS Creates Teachers
- GSS $\rightarrow \uparrow$ Supply of local educated Women $\rightarrow$ lower costs (women teachers) of private schools (female labor market locally restricted)
$\square$ Plausible?
- Punjab 1981: 60\% villages 3 or less female high school graduates, 34\% none
- Punjab 2001: Start with a 1000 women
$\square 45$ have secondary education
$\square 8$ in non-agricultural work (7 teachers/health-workers)
$\square$ Alderman experiment
$\square$ Problem: GSS may also affect Demand
- +ve: Educated mothers/women
- -ve: Less residual demand (if GSS has primary classes)


## What we do

- Argue +ve association between Girl's high schools and private schools is causal:
$\square$ Instrument using GSS placement rules
$\square$ Identification checks
- Present further evidence to argue data is consistent with a "women as teachers" supply side channel: Some portion of the effect is due to supplyside improvements
$\square$ Quantity:
- GSS matters most (not GPS, BPS, BHS)
- GSS affects supply of potential teachers (high-educated women)
- Educated women matter more than men for Private Schools
$\square$ Price:
- A "net" test: Is the "wage-bill" of private schools lower in villages with a girl's secondary school?
- Why a net test?


## BUT

- cannot structurally separate demand from supply channels


## The Data

- Where are the private schools?
$\square$ Census of Private Schools (FBS): PEIP
- Where are the public schools?
$\square$ EMIS for Punjab, largest province with $54 \%$ of the population
- Contemporaneous \& Past Village Characteristics
$\square 2001$ Population Census
$\square 1981$ Population Census
- Match all 4 sources
$\square$ PEIP to 1998 Census is easy (both collected by FBS)
$\square$ EMIS to Census: 8 months through phonetic matching - $85 \%$ success
$\square 1981$ Census to 2001 Census: 6 months $-94 \%$ success
$\square$ Final: $85 \%$ of villages, covering $84 \%$ of Punjab rural population
- Final Sample:
$\square$ Exclude (a) villages w/ pre-81 girls schools and (b) PCs with pre-81 GSS - 40\% sample
$\square$ Why?
- Baseline (81) data used to control (selection) \& construct Instrument (81 pop rank)
- Pre-existing neighbour (in PC) GSSs may have LT spill-over effects - confound interpretation
- However: Results similar though attenuated in Full sample (Appendix Table IV)


## Methodology

- Simple frame-work:
$\square$ Myopic entrepreneur/zero-fixed costs
$\square$ Private School exists in Village i IFF NetReturn ${ }_{i} \geq 0$

$$
\text { NetReturn }_{i}=\text { Fee }_{i} * N_{i}-\text { Wage }_{i} * T_{i}
$$

- Empirically

$$
\text { NetReturn }_{i}=\alpha+\left(\beta_{1}+\gamma_{1}\right) G S S_{i}+\beta^{\prime} X_{i}^{D}+\gamma^{\prime} X_{i}^{S}
$$

- Treat Net-return as Latent variable


## Identification of GSS Impact

- Outcome Equation:
$\square$ Private $_{i t}=1$ if village has private school
$\square$ GSS $_{\text {it }}=1$ if village received GSS between 1981 and 2001
$\square J_{\text {itt }}=1$ depending on other schooling options
$\square X_{i t}$ : Observable Village level characteristics
- Selection Equation

$$
G S S_{i t}=\alpha_{1}+\varphi X_{i t}+\left(\lambda_{i}+\mu_{i t}\right)
$$

## Identification of GSS impact (II)

- OLS (\& Propensity Score)
$\square$ Issue? Biased if $\operatorname{cov}\left(\nu_{i}, \lambda_{i}\right) \neq 0$.
$\square$ Village-specific omittea varıables (although few observed baseline differences between GSS \& non-GSS villages)
- First-Difference Specification
$\square$ Takes care of time-invariant omitted variables

$$
\Delta_{t} \operatorname{Pr} \text { SSchool }_{i}=\alpha+\left(\beta_{1}+\gamma_{1}\right) \Delta_{t} G S S_{i}+\beta^{\prime} \Delta_{t} X_{i}^{D}+\sum_{r} \gamma_{r}^{\prime} \Delta_{t} J_{i r t}+\left(\varepsilon_{i t+1}-\varepsilon_{t}\right)
$$

- Biased if $\operatorname{cov}\left(\varepsilon_{i t}, \mu_{i t}\right) \neq 0$.
$\square$ Time-varying omitted variables (e.g. new roads)
- So: Use IV strategy based on GSS placement guidelines


## Instrumental Variables

- Instrument: Placement Rule for GHS according to Government guidelines
$\square$ Size - Preference for larger populations
$\square$ Radius - Cannot have other school within 10 km
- Issue: don't have village GPS (distances between) etc.
- Instead use admin structures in Pakistan - PCs
$\square$ Province (Punjab)
- Districts
$\square$ Tehsils
- Qanoon-Go Halqa
* Patwar Circles
- Patwar Circles: Smallest Admin units, typically 3-4 villages
- Back of envelope: Average PC area roughly satisfies radius requirement


## Non-Linearity in Placement Rules (II)

- Our Eligibility Rule (instrument?):
$\square 1$ if village has largest (population) in PC
$\square 0 \mathrm{o}$ w
- Don't use radius directly - endogenous placement of GSS in neighbor
- Problem?
$\square$ Probability of Private Schools increases in population
$\square$ Probability of GSS increases in population
- Idea:
$\square$ Use Rule as instrument while conditioning on polynomials in village population and max PC population (Campbell 69, Angrist \& Lavy 99)
$\square$ Solution: Identify of Non-linearities/Non-monotonicities
- Non-Linearity in placement rules of GSS allow simultaneous controls for population
- Non-Linearity justified through explicit policy
- Further concerns:
$\square$ Direct effects of village PC top-rank - Identify of top-rank interactions
$\square$ Binary Outcome \& Instrument:
- Differences across Linear IV and Bivariate probits due to low treatment probabilities - prefer Biprobit


## Results

- OLS and First-Differences
- IV:
$\square$ Understanding the IV Results
$\square$ IV Results
$\square$ Further Identification Test
- Channels:
$\square$ Quantity
$\square$ Price


## Results - OLS and First Difference

Table II - Private School Existence and Previous Girls High Schools

|  | (1) | (2) | (3) | (4) | (5) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Probit | Probit - All controls | OLS (PC <br> Location <br> Dummies) | First diference | First diference \& PC Dummies |
| Treatment- Received GSS | 0.097 | 0.0646 | 0.0928 | 0.1494 | 0.1739 |
|  | (0.0223) | (0.0207) | (0.0247) | (0.0250) | (0.0241) |
| 1998 Population (000s) | 0.051 | 0.0391 | 0.0905 |  |  |
|  | (0.0032) | (0.0075) | (0.0176) |  |  |
| 1998 Population (000s) Sq | -0.0014 | -0.0011 | -0.0046 |  |  |
|  | (0.0002) | (0.0003) | (0.0014) |  |  |
| 1981 Population (000s) |  | 0.0275 | 0.0134 |  |  |
|  |  | (0.0133) | (0.0281) |  |  |
| 1981 Population (000s) Sq |  | -0.0013 | 0.0029 |  |  |
|  |  | (0.0012) | (0.0041) |  |  |
| \% Perm Houses |  | 1.2862 | 0.9383 |  |  |
|  |  | (0.0821) | (0.1804) |  |  |
| 1998-1981 Population (000s) |  |  |  | 0.0795 | 0.1162 |
|  |  |  |  | (0.0070) | (0.0079) |
| Years Exposure - GPS |  | 0.001 | -0.0001 |  |  |
|  |  | (0.0005) | (0.0007) |  |  |
| Years Exposure - BPS |  | 0.0001 | 0.0004 |  |  |
|  |  | (0.0002) | (0.0003) |  |  |
| Years Exposure - BSS |  | 0.0011 | 0.002 |  |  |
|  |  | (0.0002) | (0.0003) |  |  |
| With Patwar-Circle Dummies | NO | NO | YES |  |  |
| With PC cluster-specific time trends |  |  |  | NO | YES |
| Observations | 6968 | 6761 | 6761 | 6968 | 6968 |
| Pseudo R-sq | 0.1 | 0.18 |  |  |  |
| Adj R-sq |  |  | 0.34 | 0.07 | 0.3 |

## IV - source of Identification

Figure IV - Private School Existence/ Rule-Based Instrument and 1981 Population


Figure V: Illustrating the IV


## IV results

Table III - Private School Existence - Instrumental Variables

|  | (1) <br> First- Stage Probit | (2) <br> First-Stage Probit | (3) First-Stage $(\mathrm{QH}$ Location Dummies) | (4) <br> Linear 2nd- <br> Stage | (5) <br> Linear 2nd- <br> Stage- QH <br> Location <br> Dummies | (6) <br> BiProbit (xx vars are also included but Coeffs and SEs not reported) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Girls Secondary School Rule | $\begin{array}{r} \hline 0.0595 \\ (0.0065) \end{array}$ | $\begin{array}{r} 0.0216 \\ (0.0076) \end{array}$ | $\begin{array}{r} \hline 0.0241 \\ (0.0076) \end{array}$ |  |  |  |
| Treatment- Received GSS |  |  |  | $\begin{array}{r} 1.1785 \\ -0.5907 \end{array}$ | $\begin{array}{r} 1.0477 \\ -0.5734 \end{array}$ | $\begin{array}{r} 0.367 \\ (0.1385) \end{array}$ |
| 1981 Population (000s) |  | $\begin{array}{r} 0.029 \\ (0.0058) \end{array}$ | $\begin{array}{r} 0.0362 \\ (0.0065) \end{array}$ | $\begin{array}{r} 0.0125 \\ (0.0305) \end{array}$ | $\begin{array}{r} 0.006 \\ (0.0311) \end{array}$ | xx |
| 1981 Population (000s) Sq |  | $\begin{gathered} -0.0024 \\ (0.0006) \end{gathered}$ | $\begin{gathered} -0.0018 \\ (0.0008) \end{gathered}$ | $\begin{array}{r} -0.001 \\ (0.0016) \end{array}$ | $\begin{gathered} -0.0003 \\ (0.0017) \end{gathered}$ | xx |
| 1981 Max Population (000s) in PC |  | $\begin{gathered} -0.0033 \\ (0.0050) \end{gathered}$ | $\begin{array}{r} 0.0058 \\ (0.0063) \end{array}$ | $\begin{gathered} -0.0011 \\ (0.0094) \end{gathered}$ | $\begin{gathered} -0.0066 \\ (0.0103) \end{gathered}$ | xx |
| 1981 Max Population (000s) sq in PC |  | $\begin{array}{r} 0.0006 \\ (0.0005) \end{array}$ | $\begin{array}{r} 0.0002 \\ (0.0008) \end{array}$ | $\begin{gathered} -0.0003 \\ (0.0014) \end{gathered}$ | $\begin{gathered} -0.0005 \\ (0.0013) \end{gathered}$ | xx |
| 1998 Population (000s) |  |  |  | $\begin{array}{r} 0.0379 \\ (0.0116) \end{array}$ | $\begin{array}{r} 0.052 \\ (0.0111) \end{array}$ | xx |
| 1998 Population (000s) Sq |  |  |  | $\begin{array}{r} 0.0002 \\ (0.0006) \end{array}$ | $\begin{gathered} -0.0006 \\ (0.0006) \end{gathered}$ | xx |
| \% Perm Houses |  |  |  | $\begin{array}{r} 1.2757 \\ (0.1169) \end{array}$ | $\begin{array}{r} 0.7417 \\ (0.1671) \end{array}$ | xx |
| Observations | 6968 | 6968 | 6968 | 6874 | 6874 | 6874 |
| Chi-sq/F-Test (GSS Rule $=0$ ) | 109.49 | 9.53 | 10.02 |  |  |  |
| Pseudo R-sq | 0.04 | 0.07 |  |  |  |  |
| Number of QGH 1998 |  |  | 656 |  | 656 |  |
| Prob $>$ chi2 | 0 | 0 |  |  | 0 | 0 |
| Prob $>$ F |  |  | 0 | 0 |  |  |
| Adj R-sq |  |  | 0.07 |  |  |  |

## IV Concerns

- Direct Effects of being top-ranked village in PC?
$\square$ Private entrepreneur (also) prefers top-rank
$\square$ Other public goods delivered to top-ranked
Unlikely:
- PC land-revenue collection boundary (Mughal/British period) - Political boundary is UC
- Little difference in observables (baseline \& other public good outcomes) between topranked and others - Table IV
- Identification Test 1: Table V
$\square$ GSS only placed in $5 \%$ of all villages
$\square$ Divide PCs into:
- Program PCs - at least one village got a GSS
- Non-Program PCs - no village got a GSS
$\square$ "Falsification" exercise:
- Does top-rank matter in non-program PCs
- Issue? "Special" (top-rank) village in a "special" PC?
- No observed diff between Program and Non-program PCs - robust to propensity of selection controls
- Identification Test 2: Table V
$\square$ Use variation in PC land area - top-rank matters (more) in smaller PCs
$\square$ Identify of Top-rank*Area while controlling for top-rank and area etc.

TABLE IV
DIFFERENCES IN MEANS

|  | Instrument=1 | Instrument=0 | Difference |
| :--- | ---: | ---: | ---: |
| Number of Villages | 2227 | 4738 |  |
|  |  |  |  |
| 1981 Female Literacy Rate | 0.013 | 0.015 | -0.002 |
|  | $(0.002)$ | $(0.002)$ | $(0.003)$ |
| 1981 - \% adult women with | 0.011 | 0.013 | -0.001 |
| Middle and above Education | $(0.002)$ | $(0.002)$ | $(0.003)$ |
| 1981 \% girls age 0-4 | 0.159 | 0.153 | 0.006 |
|  | $(0.008)$ | $(0.005)$ | $(0.009)$ |
| 1981 \% girls age 5-14 | 0.287 | 0.284 | 0.003 |
|  | $(0.010)$ | $(0.007)$ | $(0.012)$ |
| 1981 adult Male Literacy Rate | 0.161 | 0.167 | -0.006 |
|  | $(0.008)$ | $(0.005)$ | $(0.009)$ |
| 1981 - \% adult men with Middle | 0.110 | 0.121 | -0.011 |
| and above Education | $(0.007)$ | $(0.005)$ | $(0.008)$ |
| 1981 \% boys age 0-4 | 0.145 | 0.142 | 0.004 |
|  | $(0.007)$ | $(0.005)$ | $(0.009)$ |
| 1981 \% boys age 5-14 | 0.296 | 0.292 | 0.004 |
|  | $(0.010)$ | $(0.007)$ | $(0.012)$ |
| 1981 Female/Male Ratio | 0.904 | 0.907 | -0.002 |
|  | $(0.006)$ | $(0.004)$ | $(0.008)$ |
| 1981 Population | 2160.87 | 764.07 | $1396.80 *$ |
|  | $(37.01)$ | $(8.26)$ | $(15.24)$ |
| 1998 \% with water | 0.011 | 0.010 | 0.001 |
|  | $(0.002)$ | $(0.001)$ | $(0.003)$ |
| 1998 \% with electricity | 0.072 | 0.074 | -0.002 |
|  | $(0.005)$ | $(0.004)$ | $(0.007)$ |
| 1998 \% with Perm Houses | 0.060 | 0.065 | -0.006 |
|  | $(0.005)$ | $(0.004)$ | $(0.006)$ |

Girls Secondary School Eligibility Rule
Girls Secondary School Eligibility
Rule*Program-PC
Treatment- Received GSS
GSS Rule*Inverse Distance (sqrt PC Area)
Inverse Distance (sqrt PC Area)
1981 Population (000s)
1981 Population (000s) Sq
1981 Max Population (000s) in PC
1981 Max Population (000s) sq in PC
1998 Population (000s)
1998 Population (000s) Sq
\% Perm Houses
Predicted PC Propensity
Predicted PC Propensity Sq
Observations

## Results - Channels

- Women as Teachers Channel - consistent evidence:
$\square$ Quantity: Table VI
- GSS matters most (not GPS, BPS, BHS)
- GSS affects supply of potential teachers (high-educated women)
- Educated women matter more than men for Private Schools
- For demand channel would therefore need:
$\square$ Women matter not men; secondary educated matter not primary
$\square$ Price: Table VII
- GHS lowers educated female wages in village (Restricted Labor market)
- Issue: Sample Selection
$\square$ wage data only where have private school
$\square$ High \& low wage truncation - bias either way
$\square$ Heckman and Control function approaches


## Conclusion

- Supply constraints (upward sloping local supply) important in Education
$\square$ Developing countries but even in Developed (US?)
- Should we view this as a increase in the quality of education or a sectoral shift? (former) Private Schools and Enrollments
$\square$ Higher Enrollments (esp girls) in Villages with Private Schools
$\square$ Significant use of the private sector by the poor
- \% Private (Poor, Has Private) $=$ \% Private (Rich, No Private) Higher Enrollments:


## Better Quality: Private Schools and Test-Scores

- Dynamics - different (stronger demand) long-term effects
$\square$ Wage quadratic in years of exposure to GSS (Full sample results)
- Big-Push Theories (Rodenstein-Rodan 54, MSV 94):
$\square \begin{aligned} & \text { Focus on Primary only? NO - Secondary School Investments important - }\end{aligned}$ "virtuous cycle"
- Glimpse into Education History
$\square$ US decline in high-quality teachers - increasing employment/wages for skilled women in other fields
$\square$ This implicit subsidy alive \& kicking in Pakistan (LDCs?)


## Channels (1)

Table VI - Private School Existence - The Female Teacher Channel?

| PANEL A |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(1)$ | $(2)$ | $(3)$ | $(4)$ | $(5)$ | $(6)$ | $(7)$ |  |  |

Dependent Variable: Private School Existence
Dependent Variable: Percentage of Adult Women with

| OLS - Controls \& PC Location |  | First diference |  | OLS- Controls |  | First |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | First | \& PC | \& PC Location |  | First |  |
| Probit | Dummies | Difference | Dummies | OLS | Dummies | Difference | Dummies |
| 0.0044 | 0.0059 |  |  |  |  |  |  |
| (0.0010) | (0.0016) |  |  |  |  |  |  |
| 0.0016 | -0.0002 |  |  |  |  |  |  |
| (0.0006) | (0.0007) |  |  |  |  |  |  |
| 0.0013 | 0.002 |  |  |  |  |  |  |
| (0.0002) | (0.0003) |  |  |  |  |  |  |
| 0.0002 | 0.0004 |  |  |  |  |  |  |
| (0.0002) | (0.0003) |  |  |  |  |  |  |
|  |  |  |  | $\begin{array}{r} 0.0221 \\ (0.0037) \end{array}$ | $\begin{array}{r} 0.015 \\ (0.0042) \end{array}$ | $\begin{array}{r} 0.015 \\ (0.0031) \end{array}$ | $\begin{array}{r} 0.0183 \\ (0.0039) \end{array}$ |
|  |  | 0.0798 | 0.116 |  |  | -0.0014 | 0.0039 |
|  |  | (0.0071) | (0.0081) |  |  | (0.0012) | (0.0013) |
|  |  | 0.1515 | 0.16 |  |  |  |  |
|  |  | (0.0255) | (0.0250) |  |  |  |  |
|  |  | 0.0103 | -0.008 |  |  |  |  |
|  |  | (0.0081) | (0.0107) |  |  |  |  |
|  |  | -0.0645 | -0.0314 |  |  |  |  |
|  |  | (0.0438) | (0.0693) |  |  |  |  |
|  |  | -0.0144 | -0.0126 |  |  |  |  |
|  |  | (0.0088) | (0.0114) |  |  |  |  |
| NO | YES | NO |  | NO | YES | NO |  |
| NO | NO | NO | YES | NO | NO | NO | YES |
| 6854 | 6761 | 6854 | 6854 | 6967 | 6767 | 6964 | 6964 |
| 0.12 |  |  |  |  |  |  |  |
|  | 0.34 | 0.07 | 0.3 | 0.01 | 0.5 | 0.003 | 0.38 |

## Channels (2)

|  | PANEL B |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (9) | (10) | (11) | (12) |
|  | Dependent Variable: Private School Existence |  |  |  |
|  |  |  |  | t diference |
|  | Probit |  <br> PC FEs | First | $\& P C$ |
| \% middle \& above adult females | $0.4149$ | - 0.52 |  |  |
|  | (0.0819) | (0.1217) |  |  |
| \% middle \& above adult males | 0.3506 | 0.0783 |  |  |
|  | (0.0469) | (0.0738) |  |  |
| Change in \% Females middle + |  |  | 1.0146 | 0.5801 |
|  |  |  | (0.1029) | (0.1153) |
| Change in \% Males middle + |  |  | 0.0498 | -0.0118 |
|  |  |  | (0.0531) | (0.0716) |
| 1998-1981 Population (000s) |  |  | 0.0839 | 0.1186 |
|  |  |  | (0.0076) | (0.0080) |
| Observations | 6967 | 6873 | 6964 | 6964 |
| Pseudo R-sq | 0.17 |  |  |  |
| Adj R-sq |  | 0.34 | 0.09 | 0.3 |

## Channels (3)

Table VII - Supply Side Impact - Teaching Costs


## Private School Growth

Figure I. The Growth of Private Schools


## Private \& Public Schools

Figure II. Probability of Private School w/ Exposure to Government Schools


## Private Schools and Adult Education

Figure III. Probability Private School w/ Adult Middle \& Above Educ


TABLE I

## SUMMARY STATISTICS

| variable |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
| GSS Exists? | mean | median | sd | N |
| GPS Exists? | 0.05 | 0 | 0.21 | 6968 |
| BSS Exists? | 0.54 | 1 | 0.50 | 6968 |
| BPS Exists? | 0.11 | 0 | 0.31 | 6968 |
| Private School Exists? | 0.89 | 1 | 0.31 | 6968 |
| Number of Private Schools | 0.13 | 0 | 0.34 | 6968 |
| 1998 \% Enrolled in Private Schools | 0.22 | 0 | 0.81 | 6968 |
| Years Exposure - GSS (conditional on existence) | 0.10 | 0 | 0.21 | 902 |
| Years Exposure - GPS (conditional on existence) | 14.54 | 15 | 4.56 | 328 |
| Years Exposure - BSS (conditional on existence) | 13.38 | 13 | 3.83 | 3739 |
| Years Exposure - BPS (conditional on existence) | 57.32 | 50 | 28.66 | 770 |
| Years Exposure - Private (conditional on existence) | 32.54 | 30 | 17.81 | 5644 |
| 1981 Population | 4.66 | 4 | 3.48 | 907 |
| 1998 Population | 1210.50 | 828 | 1272.31 | 6968 |
| 1981 Number of Women w/ Middle and Above Education | 1829.09 | 1203 | 2023.31 | 6968 |
| 1998 Number of Women w/ Middle and Above Education | 4.25 | 1 | 17.60 | 6968 |
| 1981 Number of Women w/ Matric and Above Education | 27.18 | 11 | 66.53 | 6968 |
| 1998 Number of Women w/ Matric and Above Education | 1.84 | 0 | 8.29 | 6968 |
| 1981 Percentage of Adult Women with Middle and Above Education | 13.07 | 5 | 39.36 | 6968 |
| 1998 Percentage of Adult Women with Middle and Above Education | 0.012 | 0.004 | 0.026 | 6965 |
| 1998 \% HHs w/ Permanent Housing | 0.056 | 0.031 | 0.067 | 6967 |
| Village Land Area | 0.06 | 0 | 0.05 | 6968 |
| Number of Villages in Patwar Circle | 1647.79 | 1146 | 2340.71 | 6874 |

## APPENDIX TABLE I

PRIVATE SCHOOLS IN PUNJAB

| Differences in Wages | PANEL A |  |  |
| :---: | :---: | :---: | :---: |
|  | Private Schools | Public Schools | Difference |
| Men | 1758.28 | 6394.18 | 4635.89 |
|  | (-1284.52) | (-2678.37) | (-122.46) |
| Women | 1067.270 | 5888.480 | 4821.21 |
|  | (761.540) | (2066.280) | (55.58) |
| All | 1231.000 | 6178.000 | 4946 |
|  | (959.140) | (2447.010) | -55.71 |
|  | PANEL B |  |  |
|  |  | Villages Without |  |
|  | Villages With private schools (Punjab) | Private Schools (Punjab) | Difference |
| Percentage Enrolled | 61 | 46 | 15 |
| Percentage Females Enrolled | 56 | 35 | 21 |
| Percentage Males Enrolled | 67 | 55 | 12 |
| Private Enrollment Share | 23 | 11 | 12 |
| Public Enrollment Share | 76 | 88 | -12 |
| PrivateEnrollment Share (Poor Only) | 17 | 6 | 11 |
| Private Enrollment Share (Middle Only) | 18 | 11 | 7 |
| Private Enrollment Share (Rich Only) | 34 | 18 | 16 |
|  | PANEL C |  |  |
| Differences in Test Scores | Private Schools | Public Schools | Difference |
| English Scores (Raw Percentage Correct) | 41.800 | 24.400 | 17.400 |
|  | (15.500) | (15.080) | (0.400) |
| English Scores (Item Response Scaled Scores) | 0.640 | -0.260 | 0.900 |
|  | (0.630) | (0.910) | (0.020) |
| Mathematics Scores (Raw Percentage |  |  |  |
| Correct) | 43.430 | 34.560 | 8.870 |
|  | (16.610) | (18.520) | (0.470) |
| Mathematics Scores (Item Response Scaled |  |  |  |
| Score) | 0.360 | -0.030 | 0.390 |
|  | (0.660) | (0.820) | (0.020) |

## Appendix Table III - Impact of Private Schools on Overall Village Enrollment (\%)

|  | (1) | (2) | (3) |
| :---: | :---: | :---: | :---: |
|  | OLS | OLS - All controls | PC FEs - All controls |
| Private School Exists | 0.1155 | 0.0977 | 0.1271 |
|  | (0.0065) | (0.0069) | (0.0105) |
| 1998 Population (000s) | -0.0563 | -0.0605 | -0.1019 |
|  | (0.0039) | (0.0084) | (0.0108) |
| 1998 Population (000s) Sq | 0.0024 | 0.0027 | 0.0064 |
|  | (0.0004) | (0.0007) | (0.0009) |
| 1981 Population (000s) |  | -0.0194 | -0.0482 |
|  |  | (0.0081) | (0.0172) |
| 1981 Population (000s) Sq |  | 0.0006 | 0.0086 |
|  |  | (0.0006) | (0.0025) |
| \% Perm Houses |  | -0.0294 | 0.2719 |
|  |  | (0.0721) | (0.1109) |
| Years Exposure - GSS |  | 0.0047 | 0.0059 |
|  |  | (0.0008) | (0.0010) |
| Years Exposure - GPS |  | 0.0026 | 0.0037 |
|  |  | (0.0003) | (0.0004) |
| Years Exposure - BPS |  | 0.0015 | 0.002 |
|  |  | (0.0001) | (0.0002) |
| Years Exposure - BSS |  | 0.0024 | 0.003 |
|  |  | (0.0002) | (0.0002) |
| Observations | 6968 | 6761 | 6761 |
| R -squared | 0.1184 | 0.1886 |  |
| Adj R-sq |  |  | 0.31 |

## Baseline Differences

APPENDIX TABLE II
BASELINE DIFFERENCES IN MEANS

|  | Treated | Not Treated | Difference |
| :--- | ---: | ---: | ---: |
| Number of Villages | 328 | 6640 |  |
| 1981 Female Literacy Rate | 0.017 | 0.015 | 0.002 |
|  | $(0.007)$ | $(0.001)$ | $(0.007)$ |
| 1981 - \% adult women with Middle | 0.016 | 0.012 | 0.004 |
| and above Education | $(0.007)$ | $(0.001)$ | $(0.007)$ |
| 1981 \% girls age 0-4 | 0.154 | 0.155 | -0.001 |
|  | $(0.020)$ | $(0.004)$ | $(0.020)$ |
| 1981 \% girls age 5-14 | 0.289 | 0.285 | 0.004 |
|  | $(0.025)$ | $(0.006)$ | $(0.026)$ |
| 1981 adult Male Literacy Rate | 0.184 | 0.164 | 0.020 |
|  | $(0.021)$ | $(0.005)$ | $(0.022)$ |
| 1981 - \% adult men with Middle | 0.135 | 0.116 | 0.019 |
| and above Education | $(0.019)$ | $(0.004)$ | $(0.019)$ |
| 1981 \% boys age 0-4 | 0.143 | 0.143 | 0.001 |
|  | $(0.019)$ | $(0.004)$ | $(0.020)$ |
| 1981 \% boys age 5-14 | 0.295 | 0.293 | 0.002 |
|  | $(0.025)$ | $(0.006)$ | $(0.026)$ |
| 1981 Female/Male Ratio | 0.911 | 0.906 | 0.005 |
|  | $(0.016)$ | $(0.004)$ | $(0.016)$ |
| 1981 Population | 2069.69 | 1168.05 | $901.63 * *$ |
|  | $(94.17)$ | $(15.12)$ | $(71.16)$ |



## Educational Attainment Levels

Figure 5 : Gender Inequality in Education
Pakistan 1990-91


Source: PIHS 1998-99


## Public School Construction

Figure I. Government School Exposure conditional on receiving school


## School Enrollment



## Private School Enrollment: The 90s

Table 4: Percentage of children enrolled in private schools

|  | Punjab | Sindh | NWFP | Balochistan |
| :--- | :--- | :--- | :--- | :--- |
| 1991 | 15.5 | 16.07 | 4.29 | 4.4 |
| 2001 | 30.7 | 21.13 | 17.32 | 6.49 |

Notes: Based on PIHS data, 1991 and 2001 rounds. The table shows the percentage of enrolled children in private schools in the four main provinces of Pakistan.


## Private Enrollment



## Private School Enrollment



The Setting up of Private Schools


## Some Facts About the Private Sector

Differences in Wages Men

Women

All

PANEL B

| Private Schools | Public Schools | Difference |
| ---: | ---: | ---: |
| 1758.28 | 6394.18 | 4635.89 |
| $(-1284.52)$ | $(-2678.37)$ | $(-122.46)$ |
| 1067.270 | 5888.480 | 4821.21 |
| $(761.540)$ | $(2066.280)$ | $(55.58)$ |
| 1231.000 | 6178.000 | 4946 |
| $(959.140)$ | $(2447.010)$ | -55.71 |

- Lower Wages in Private Sector
$\square$ Public sector salaries are 5 X
- No Gender difference in Public Sector
$\square$ Significant difference in private sector
- Teacher's wages $90 \%$ of overall expenditures
$\square$ Private Sector is $1 / 2$ as expensive per child!


## Female Penalty in Private Sector Wages

|  | (3) | (4) |
| :---: | :---: | :---: |
|  | All Schools | All Schools |
| Female | $\begin{gathered} 0.023 \\ (0.019) \end{gathered}$ | $\begin{aligned} & 0.025 \\ & (0.02) \end{aligned}$ |
| Local | $\begin{gathered} -0.066 \\ (0.024)^{* * *} \end{gathered}$ | $\begin{gathered} -0.065 \\ (0.025)^{* *} \end{gathered}$ |
| Female*Private | $\begin{gathered} -0.291 \\ (0.053)^{* * *} \end{gathered}$ | $\begin{gathered} -0.275 \\ (0.047)^{* * *} \end{gathered}$ |
| Local*Private | $\begin{gathered} -0.143 \\ (0.049)^{* * *} \end{gathered}$ | $\begin{gathered} -0.082 \\ (0.044)^{*} \end{gathered}$ |
| Private | $\begin{gathered} -0.721 \\ (0.045)^{* * *} \end{gathered}$ | $\begin{gathered} -0.797 \\ (0.045)^{* * *} \end{gathered}$ |
| Education: F.A./F.Sc.. | $\begin{gathered} 0.159 \\ (0.022)^{* * *} \end{gathered}$ | $\begin{gathered} 0.145 \\ (0.020)^{* * *} \end{gathered}$ |
| Education: B.A./B.Sc. | $\begin{gathered} 0.333 \\ (0.030)^{* * *} \end{gathered}$ | $\begin{gathered} 0.312 \\ (0.027)^{* * *} \end{gathered}$ |
| Education: M.A./M.Sc. or above | $\begin{gathered} 0.475 \\ (0.039)^{* * *} \end{gathered}$ | $\begin{gathered} 0.475 \\ (0.038)^{* * *} \end{gathered}$ |
| Training: PTC/JV/SV | $\begin{gathered} 0.256 \\ (0.044)^{* * *} \end{gathered}$ | $\begin{gathered} 0.252 \\ (0.044)^{* * *} \end{gathered}$ |
| Training: CT | $\begin{gathered} 0.186 \\ (0.037)^{* * *} \end{gathered}$ | $\begin{gathered} 0.193 \\ (0.036)^{* * *} \end{gathered}$ |
| Training: B.Ed. or above | $\begin{gathered} 0.278 \\ (0.042)^{* * *} \end{gathered}$ | $\begin{gathered} 0.274 \\ (0.040)^{* * *} \end{gathered}$ |
| Experience: 1-3 years | $\begin{gathered} 0.135 \\ (0.031)^{* * *} \end{gathered}$ | $\begin{gathered} 0.117 \\ (0.027)^{* * *} \end{gathered}$ |
| Experience: > 3 years | $\begin{gathered} 0.217 \\ (0.034)^{* * *} \end{gathered}$ | $\begin{gathered} 0.21 \\ (0.032)^{* * *} \end{gathered}$ |
| Age | $\begin{gathered} 0.038 \\ (0.009)^{* * *} \end{gathered}$ | $\begin{gathered} 0.04 \\ (0.008)^{* * *} \end{gathered}$ |
| Age Squared | $\begin{gathered} 0 \\ (0.000)^{* *} \end{gathered}$ | $\begin{gathered} 0 \\ (0.000)^{* * *} \end{gathered}$ |
| Constant | $\begin{gathered} 6.931 \\ (0.172)^{* * *} \end{gathered}$ | $\begin{gathered} 6.926 \\ (0.155)^{* * *} \end{gathered}$ |
| Fixed Effects | none | Village Level |
| Observations | 4552 | 4552 |
| R-squared | 0.83 | 0.85 |

- The table on the left shows the wage regressions used to generate the adjusted and unadjusted wage figures
- The dependent variable is the log of the salary earned
- The first column is based on the crosssection
- The second column adds in village fixed-effects, so that we compare only among those teaching in the same village


## Wage Differentials for teachers



## Private Schools: Who Goes (1)

Figure 4: Changes in Net Enrollment Rate in the Public and Private Sector

## Private Schools: Who Goes (2)

Figure 5: Growth Rate of enrollment in public and private schools

## Some Facts About the Private Sector




- Not much to say....
- Turns out to be around 2 years learning...
- Similar to Jiminez and Tan, Tooley results

